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This paper presents a comprehensive analysis of the transport processes that control
the self-pressurization of a cryogenic storage tank in normal gravity. A lumped
thermodynamic model of the vapour region is coupled with the Navier–Stokes
and energy equations governing heat, mass and momentum transport in the liquid.
These equations are discretized using a Galerkin finite-element method with implicit
time integration. Three case studies are considered based on three different heating
configurations imposed on the tank wall: liquid heating, vapour heating and uniform
heating. For each case, the pressure and temperature rise in the vapour and the flow
and temperature distributions in the liquid are determined. Results are compared
to a lumped thermodynamic model of the entire tank. It is shown that the final
rate of pressure rise is about the same in each case and close to that predicted by
thermodynamics even though the actual pressures are different because of varying
degrees of thermal stratification. Finally, a subcooled liquid jet is used to mix the
liquid and limit the pressure rise. Even so, there is still some thermal stratification in
the liquid, and as a result the final vapour pressure depends on the particular heat
distribution.

1. Introduction
The extension of human space exploration from low Earth orbit into the solar

system is one of NASA’s biggest challenges for the next millennium. The projected
exploration programme includes a series of human and robotics expeditions to low-
and high Earth orbit, the Moon, Mars and possibly to the asteroids and other
planetary moons. Integral to all phases of these space and planetary expeditions is
effective, affordable and reliable cryogenic fluid management for use in the propellant
and life-support systems. Without safe and efficient cryogen storage, economically
feasible and justified human missions will not be possible.

With the exception of extremely short-duration applications, significant cost savings
can be achieved through reduction of launch mass by improving the cryogenic storage
and transfer technologies (Salerno & Kittel 1999). Cryogen vaporization is one of the
main causes of mass loss and self-pressurization in the storage tanks (Kittel & Plachta
2000). Vaporization can occur during the filling process or may be caused by heat
leaks into the tank from the surrounding environment. Ordinarily, the excess pressure
can be relieved by direct venting to the environment. For on-surface applications, such
as those on the surfaces of the Earth, Moon or Mars, the relative position of liquid
and vapour is well known. Therefore, continuous venting can be accomplished easily;
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but over a significant length of time, it results in considerable cryogen mass loss.
For in-Space applications, the spatial configuration of liquid and vapour is generally
unknown, and direct venting without pre-positioning of the two phases is precluded
because of the possibility of expelling liquid along with the vapour. Moreover, venting
in Space is also undesirable because it prohibits manned flight operations around the
storage tanks. Therefore, from both safety and cryogen conservation viewpoints, a
ventless pressure control strategy is highly desirable for both on-surface and in-Space
applications.

There are a number of experiments and thermodynamic studies of cryogen storage
tanks in normal and reduced gravity. The most notable is due to Aydelott (1967),
which shows that the rate of pressure rise is lower in reduced-gravity conditions
because of an increase in the liquid-wetted wall areas and increased boiling. The
experimental results were shown to lie somewhere between those obtained from two
simplified thermodynamic analyses. In one thermodynamic model, the entire system
of liquid and vapour is assumed to be at one temperature and pressure, and in the
other all the heat entering the system is assumed to go directly into evaporation
with the liquid temperature held constant. Further experimental work (Aydelott 1979,
1983) investigates the different liquid flow patterns resulting from an axial mixing jet.
Dimensionless parameters are developed that characterize the four different liquid
flow patterns observed and their effect on the bulk mixing behaviour.

Application of jet mixing to control the tank pressure is further investigated
experimentally by Lin, Hasan & Van Dresar (1994). They show that the effects of
natural-convection boundary layers forming at the wall on the vapour pressure rise
can be countered by a subcooled jet flow emerging from the centre of the tank.
They also conclude that a thermal equilibrium state is hard to achieve and that
the existing correlations for mixing time and vapour-condensation rates based on
small-scale tanks may not be applicable to large-scale liquid-hydrogen systems. The
correct extrapolation can only be determined when the interaction between the forced
and natural-convective flows is properly understood. The experimental investigations
of Poth & Van Hook (1972) also show that there are significant departures from
thermodynamic equilibrium and that a mixing jet could be used to minimize thermal
stratification and reduce the tank pressure.

The effects of hybrid thermal control on the pressurization of a cryogenic propellant
tank are investigated by Plachta (2000). It is shown experimentally that through
effective use of passive insulation and active cryocooler technology, it is possible
to control tank pressurization by establishing zero boil-off conditions at Earth’s
normal-gravity environment.

The theoretical and numerical treatments of cryogenic storage tanks can be divided
into three main categories. The first category consists of tank pressurization studies
that compute the pressure rise in the vapour mainly in terms of thermodynamic
considerations. Lin & Hasan (1992) study self-pressurization of a partially filled
liquid-hydrogen storage tank under microgravity conditions. The effects of tank size,
liquid fill level and wall heat flux on the tank pressure rise are studied theoretically.
They show that liquid thermal expansion tends to cause vapour condensation and
wall heat flux leads to liquid evaporation at the interface. However, this approach
is limited because the problem is assumed to be one-dimensional and there is no
convection in the liquid. Vaughan & Schmidt (1991) performed a lumped analysis of
a no-vent fill process in a ground-based environment. The model accounts for several
major effects such as fluid inlet temperature, interfacial mass transfer and inlet jet
characteristics that influence the fill process. It includes a semi-empirical condensation
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model based on universal submerged-jet theory that considers the condensation to
be a function of bulk fluid properties and the liquid turbulence induced by the jet
geometry and orientation. They show very good agreement between their model and
some experimental results using Freon-114. Finally, Cha, Neiman & Hull (1993)
perform a thermodynamic analysis of cryogen boil-off in a dewar and correlate
the pressure variations in the container to latent heat of vaporization during an
experiment with liquid helium.

The second category is composed of investigations that examine just the fluid
flow and thermal stratification in the liquid cryogen without any thermodynamic
consideration of the vapour phase. These investigations focus on the fluid flow in the
liquid in terms of either mainly natural convection (Navickas 1988; Lin & Hasan
1990a; Grayson, Watts & Jurns 1997) or in terms of forced flows caused by jets or
external thrusts (Hochstein, Gerhart & Aydelott 1984; Lin & Hasan 1990b; Grayson
& Navickas 1993). In these representations, the transport processes in the vapour
phase are also ignored, and the temperature of the liquid–vapour interface is assumed
uniform and equal to its initial saturation value. Consequently, these investigations
divulge no information with respect to the pressure rise in the vapour as a function
of the various flow parameters in the liquid.

Finally, the third category of investigations examine mainly the behaviour and
evolution of the liquid–vapour interface excluding any thermal or pressurization
effects. The analyses are performed for both ground-based and microgravity
applications and are mainly based on the Volume-of-Fluid (VOF) approach as
embodied by the Los Alamos code RIPPLE and its derivatives (Kothe, Mjolsness &
Torrey 1991). Investigations in this category have focused on: the evolution of the
free surface as influenced by the microgravity environment (Liu 1994), the reorienting
of the vapour subject to spacecraft thrust (Hung & Shyu 1992), the free surface
deformation as affected by the jet flow and geysers (Kothe et al. 1991; Thornton &
Hochstein 2001) or by external forces such as magnetic fields (Marchetta & Hochstein
2000; Marchetta, Hochstein & Sauter 2001) and fluid slosh coupled to gravity-gradient
accelerations or spacecraft dynamics (Peterson, Crawley & Hansman 1989; Hung &
Lee 1994). The studies in this category are all limited to isothermal models, and,
again, divulge no information with regard to tank pressurization.

The present paper combines many of the features of these previous investigations
in order to develop a more comprehensive model capable of determining how the
flow parameters in the liquid affect the pressure rise in the vapour. This appears to
be the first time that such a complete approach has been used. This is done by solving
the full set of mass, momentum and energy equations in the liquid region coupled
with a lumped thermodynamic model of the vapour region. The interface between the
liquid and vapour regions is treated as a deformable free surface. The temperature
and pressure in the vapour are considered to be spatially uniform but are permitted
to change with time owing to any net heat and mass transfer across the boundaries.

The description of an idealized cryogenic tank and the development of its
mathematical model are presented in § 2 along with a thermodynamic model of
the entire tank and an identification of the most important dimensionless parameters.
The liquid equations are solved by using the finite-element method with appropriately
modified boundary conditions to account for the effects of the vapour region. This is
briefly described in § 3. Finally, results are presented in § 4 for three different tank-wall
heat distributions both with and without a jet. The vapour pressure rise is determined
along with the temperature and flow fields in the liquid. These are compared to the
results of a purely thermodynamic analysis.
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Figure 1. The geometry of an idealized spherical cryogenic tank. For the liquid-heating cases,
a strip heater is placed up against the tank wall between z = zB and z = zT. For the jet
cases, liquid is forced upwards through an inlet at the bottom of the tank and removed from
the surrounding outlet at the same flow rate. The temperature of the incoming jet fluid is
controlled by using an external cryocooler.

2. Formulation of the mathematical model
The present model considers only ground-based applications where the strength

of gravity is sufficient to keep the liquid beneath the vapour. This would apply to
situations where the tank is placed on the surface of the Earth, Moon, Mars or
other planetary body. The problem of in-Space applications is more difficult since
the liquid has no preferred position in the tank, and there could be multiple isolated
vapour bubbles moving around. The model developed herein would equally apply
to these situations except that a more sophisticated method of keeping track of the
free-surface position would be required. For the most part, the lumped treatment of
the vapour region and its coupling with the liquid region would still hold.

The equilibrium arrangement of liquid and vapour for a ground-based spherical
cryogenic tank of radius RT is shown in figure 1. The origin of the coordinate system
corresponds to the geometric centre of the tank and the negative z-axis is parallel
to the gravity vector. The tank is filled with liquid up to a height zF, the fill level,
and saturated vapour occupies the remaining space above. The present work only
considers those cases for which zF = 0, which corresponds to a half-filled tank. Only
solutions which are symmetric about the z-axis are permitted in order to reduce the
computational burden. This motivates the use of cylindrical coordinates to describe
the geometry. The domain of the numerical model is also restricted to the interior of
the tank, neglecting all the external tubes and connections. Approximate boundary
conditions are used where these external connections intersect with the tank wall.
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2.1. Liquid region

The liquid is treated as an incompressible fluid with density ρL, dynamic viscosity µL,
specific heat cL and thermal conductivity kL. These properties are evaluated at the
normal boiling point temperature TB. The effects of natural convection are accounted
for by using the standard Boussinesq approximation, retaining the leading-order
density variations only in the body force term in the Navier–Stokes equations. The
coefficient of thermal expansion is denoted by βL and the acceleration due to gravity
by g. This is described by the following mass, momentum and energy equations for
the liquid region,

∇ · uL = 0, (2.1)

ρL

(
∂uL

∂t
+ uL · ∇uL

)
= −∇pL + µL∇2uL − ρLg [1 − βL (TL − TB)] ez, (2.2)

ρLcL

(
∂TL

∂t
+ uL · ∇TL

)
= kL∇2TL, (2.3)

where uL is the liquid velocity, pL is the liquid pressure, TL is the liquid temperature
and ez is a unit vector pointing in the positive z direction.

2.2. Boundary conditions at the liquid–vapour interface

Conservation of mass requires the interfacial mass flux J due to evaporation or
condensation to be equal to the rate at which liquid is flowing towards the interface,

J = ρL (uL − uI) · n, (2.4)

where n is the unit normal vector pointing into the vapour and uI is the interfacial
velocity. There is a similar balance on the vapour side of the interface. According to
this definition, J is positive for evaporation and negative for condensation. If J = 0,
then this reduces to the more familiar form of the kinematic condition, which states
that the fluid must be moving with the same velocity as the interface.

The no-slip condition requires the tangential component of liquid velocity to be
equal to the tangential component of the interfacial velocity,

(uL − uI) · t = 0, (2.5)

where t is a unit tangent vector at the interface.
A simplified energy boundary condition is obtained by balancing the energy required

for phase change with the discontinuity in the heat flux,

LJ = (qL − qV) · n, (2.6)

where L is the latent heat of vaporization (the enthalpy jump at constant temperature
and pressure) and qL = −kL∇TL and qV = −kV∇TV are the heat-flux vectors on the
liquid and vapour side of the interface, respectively. The most general form of this
boundary condition also includes a term proportional to J 3 to account for the jump
in kinetic energy, but this can be neglected compared to terms linear in J because the
rate of evaporation is so small for the present cases. Other terms proportional to the
viscosity are also negligible and are not included here. For a derivation of the most
general form of this boundary condition, see Delhaye (1974).

A normal-stress balance across the interface, neglecting viscous stresses in the
vapour and the momentum jump due to evaporation, simplifies to

pL − pV − 2µLSL · n · n = 2H σ, (2.7)
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where pV is the vapour pressure, σ is the interfacial surface tension, H is the mean
curvature of the interface and SL is the rate-of-strain tensor in the liquid defined by

SL = 1
2

[
∇uL + (∇uL)T

]
, (2.8)

where ∇uL and (∇uL)T are the velocity-gradient tensor and its transpose. This reduces
to the familiar Young–Laplace equation when there is no fluid motion. The surface
tension is assumed to be constant for this analysis, so the shear-stress boundary
condition is just

SL · n · t = 0. (2.9)

The viscous stress on the vapour side of the interface is neglected because the dynamic
viscosity of the vapour is normally so much smaller than that of the liquid, µV � µL.
This is similar to the one-sided model used by Burelbach, Bankoff & Davis (1988) to
study the evaporation of thin liquid films.

If the liquid at the interface were in thermodynamic equilibrium with the adjacent
vapour, then the interfacial temperature TI would be equal to the saturation
temperature TS, which depends on the vapour pressure pV according to this form of
the Clausius–Clapeyron equation for an ideal gas,

TS =

(
1

TB

− RG

Lm
ln

pV

pB

)−1

, (2.10)

where TB is the normal boiling-point temperature at atmospheric pressure pB, m is
the molar mass of the vapour and RG is the ideal-gas constant. The interface is
not in equilibrium when there is evaporation or condensation, and the interfacial
temperature must be different from its equilibrium value, even if this difference is
small. This departure from equilibrium can be described by the following constitutive
equation derived from kinetic theory (Schrage 1953),

κJ = TI − TS, (2.11)

κ =
1

apVL

(
8T 5

S R3
G

m3π

)1/2

, (2.12)

where a is the accommodation coefficient, the fraction of incoming vapour molecules
that are absorbed by the liquid. The value a = 1 is assumed here. For typical properties
and evaporation rates, the left-hand side of (2.11) is normally negligible, leading to
the simpler and more often used condition TI = TS, but there are circumstances, such
as when the free surface meets a solid wall, where singularities might arise if the
complete condition is not used (see Burelbach et al. 1988).

2.3. Other boundary conditions

Three different heat-flux distributions are prescribed on the tank wall similar to those
used in the experiments of Aydelott (1967). For the liquid-heating case, a constant
heat flux qH is prescribed on the interior heater surface between zB < z < zT,
which is completely submerged in the liquid and flush against the tank wall. This is
approximated by simply prescribing the liquid heat flux directly on the tank wall,

qL · nT = −qH, (2.13)

where nT is the outward-pointing normal at the tank wall. The rest of the tank wall is
perfectly insulated. For the vapour-heating case, this same amount of heat is released
only within the vapour region. It doesn’t matter exactly how this heat is distributed
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because the vapour is treated in a lumped fashion. For the uniform-heating case, a
constant heat flux is applied uniformly over the entire tank wall. For all three cases,
the total heat input is the same.

When the jet is used, it is forced into the liquid region through an opening at the
bottom of the tank with inner diameter dJ. The following parabolic velocity profile is
prescribed at the jet entrance,

uL · ez = 2wJ

(
1 − 4r2

d2
J

)
, (2.14)

uL · er = 0, (2.15)

where wJ is the average jet speed. The jet entrance over which this boundary condition
is applied is specifically defined as that portion of the spherical tank surface restricted
by r < dJ/2 and z < 0.

The total amount of liquid inside the tank is kept constant by removing it at the
same flow rate wJπ(dJ/2)2 through the outlet boundary, which is similarly defined as
that portion of the spherical tank surface restricted by rN < r < rO and z < 0. This
is done by prescribing the following velocity profile on this boundary,

uL · ez = 1
2
wJd

2
J

(
r2 − r2

N

) / (
r2
O − r2

N

)
− log (r/rN)/ log (rO/rN)

r2
O + r2

N −
(
r2
O − r2

N

) /
log (rO/rN)

, (2.16)

uL · er = 0. (2.17)

This is the exact solution for the flow between two cylinders with inner and outer
radii rN = dN/2 and rO = dO/2, respectively. The temperature of the liquid at the jet
inlet is set equal to the constant temperature TJ. The outlet boundary is insulated for
the liquid-heating and vapour-heating cases, but has a specified heat flux prescribed
upon it for the uniform-heating case. The area of the jet inlet is excluded from the
total tank area used to compute the heat flux in the uniform-heating case when the
jet is used.

The boundary condition at the liquid–vapour-wall contact line is simply that its
position be fixed to z = zF. This avoids dealing with all of the complexities required
to model dynamic contact line motion, such as permitting slip in the vicinity of the
contact point. For the cases considered here, the free-surface deflection is so small that
the contact point would only move from its initial position by a negligible amount
anyway. In order to have a consistent solution, it is not possible to fix both the
position and contact angle simultaneously. Thus, the contact angle is not specified
and is solved for as part of the problem. This contact angle may conflict with the
actual contact angle, which is very close to zero for hydrogen, but it is unavoidable
unless dynamic contact line motion is considered. It is expected and assumed that
the exact shape of the interface near the contact point will not significantly affect the
results presented here. Future work will include a consistent treatment of dynamic
contact-line motion.

2.4. Lumped vapour region

The vapour is treated as an inviscid compressible ideal gas with spatially uniform
temperature TV, pressure pV and density ρV. This is valid as long as the heat flow
into the vapour region is sufficiently small. Even if there is some fluid flow and
variable temperature distribution in the vapour, it is only the total vapour pressure
that is important for determining the saturation temperature TS, and it will be shown
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that pressure variations due to any non-uniformity in the vapour region would be
extremely small compared to the total thermodynamic pressure.

The total vapour pressure can be thought of as a uniform thermodynamic pressure
plus perturbations due to dynamic and hydrostatic pressure changes. The thermo-
dynamic pressure is normally many orders of magnitude greater than the dynamic
and hydrostatic pressures. For instance, the dynamic pressure scale ρVu2

V/2 based on
a maximum jet speed of uV = 1 cm s−1 is equal to 6.65 × 10−5 Pa, and the viscous
pressure scale µVuV/RT is equal to 6.414 × 10−7 Pa. A typical hydrostatic pressure
difference is equal to ρVgRT = 0.652 Pa. These are negligible when compared to the
typical thermodynamic pressure pB = 1.014 × 105 Pa, and they can be omitted when
computing the corresponding saturation temperature using (2.10). Since the interfacial
temperature is set equal to the saturation temperature, the interfacial temperature
will be nearly constant even if there is some flow in the vapour or changes in the free-
surface position. The only other way in which flow in the vapour may become
important is by exerting a shear stress on the liquid or by deforming the free surface,
but these effects would be small in the present situation.

The vapour density is related to the temperature and pressure through the ideal-gas
law,

ρV =
pVm

RGTV

. (2.18)

Since the total pressure is nearly constant as explained in the previous paragraph,
the relative change in density from its saturation value will be due mainly to any
temperature variations in the vapour, |ρV − ρS| /ρS ≈ |TV − TS| /TS. In order for
the variations in vapour density to be small, this requires |TV − TS| /TS � 1. This
can be restated in terms of the average temperature gradient and tank radius as
|∇TV| RT/TS � 1. Let QV denote the total amount of heat entering the vapour region
through the tank wall. Then, the approximate temperature gradient at the wall due
to this heat flux is QV/2πRT(RT − zF)kV. Thus, in order for temperature variations to
be relatively small, it is necessary that

QV

2π(RT − zF)kVTS

� 1. (2.19)

It is also necessary for the interfacial temperature to change by only a small relative
amount over the thermal-diffusion timescale. This can be expressed by the condition

1

TS

∂TS

∂t

R2
T

αV

� 1. (2.20)

When this condition is satisfied, the temperature in the bulk vapour has sufficient time
to rise along with the interfacial temperature, preventing any steep thermal boundary
layers from forming at the interface. Unfortunately, there is no simple way to test
this assumption in advance, because ∂TS/∂t is determined by the complete solution,
which has yet to be determined. The validity of this assumption will be checked for
each solution presented later.

Even though the pressure is spatially uniform, it will change over time if there is
some net heat or mass transfer into the vapour region. Let QV = −

∫
T

qV · nT dS and

QIV =
∫

I
qV · n dS denote the total heat powers coming into the vapour through the

tank wall and the vapour side of the interface, respectively. Let M =
∫

I
JdS be the

total rate at which liquid mass is being evaporated. If V is the volume of the vapour
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region, then the rate at which the total vapour mass changes is given by

d

dt
(ρVV ) = M. (2.21)

If the internal energy of the vapour per unit mass is denoted by e, then the rate at
which the total vapour energy changes is given by

d

dt
(ρVV e) = QV + QIV + M

(
e +

pV

ρV

)
− pV

dV

dt
. (2.22)

The third term on the right-hand side of (2.22) is the incoming flux of internal energy
due to evaporation, the fourth term is the pressure work done by evaporation, and
the last term is the pressure work due to volume change. For an ideal gas, the internal
energy is solely a function of temperature,

e = cVT , (2.23)

where cV is the vapour specific heat at constant volume. The energy required for
evaporation is provided by the integrated heat flux difference across the interface
(neglecting the very small kinetic energy changes),

LM = QIL − QIV, (2.24)

where QIL =
∫

I
qL · n dS is the total integrated heat flux on the liquid side of the

interface.
Both the total tank volume VT and the total mass inside the tank are fixed, so the

change in vapour mass must equal the change in liquid mass,

d

dt
(ρVV ) =

d

dt
[ρL (V − VT)] =

d

dt
(ρLV ) . (2.25)

The solution of these equations is outlined in the Appendix and results in a single
nonlinear evolution equation satisfied by pV,

dpV

dt
= F (QV + QIL) , (2.26)

where F is given by

F (pV) =
L

V

{
cVTS +

(
Lm

RGTS

− 1

)
ρL

ρL − ρS

[
L − pV

(
1

ρS

− 1

ρL

)]}−1

, (2.27)

where ρS is the vapour density evaluated at the saturation temperature corresponding
to pV, and V can be written as a function of ρS according to (A 2). The liquid-side heat
power QIL depends on pV because of the interfacial boundary condition TI = TS(pV).
Thus, the rate of change of vapour pressure depends on the liquid heat flux, but the
liquid heat flux, in turn, depends on the vapour pressure. This is the manner by which
the liquid and vapour regions are coupled together.

If the vapour pressure does not change much from its initial value over the time
period of interest, then F can be replaced by its constant initial value F0 evaluated
at the initial pressure p0. This is true for the cases that will be examined in this
paper, and replacing F by F0 yields nearly identical results. If QV and QIL were
constant, then (2.26) could be integrated immediately with the result that pV would
increase linearly with time. This agrees with the upcoming numerical results after the
spatial temperature distribution in the liquid has reached its static configuration since
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QIL approaches a constant. For earlier times, the transient nature of QIL requires a
non-trivial solution of (2.26).

Not all of the terms in (2.27) are equally important. For hydrogen at its normal
boiling point, the vapour–liquid density ratio is small, ρV/ρL � 1, and the specific
heat and pressure work terms are of lesser significance. By retaining only the most
important term,

F ≈ RGTS

LV m
. (2.28)

This shows that the vapour pressure will increase more slowly as the latent heat L

or the vapour volume V increases. This agrees with physical intuition since a larger
latent heat means the same heat flux will evaporate less liquid, and the dependence
on V is what we would expect from the ideal gas law.

2.5. Thermodynamic model of the entire tank

Before solving this complicated problem, it is useful to consider the simpler limiting
case that would be obtained by assuming that the liquid temperature is also nearly
uniform, TL ≈ TV ≈ TS. This would require (TL − TS) /TS ≈ ∇TLRT/TS � 1. Since
the temperature gradient near the heater is approximately qH/kL, this requires
qHRT/TSkL � 1. In addition, the interfacial temperature cannot be changing too
fast. As in the vapour, this requires ∂TS/∂t � αLTS/R

2
T.

If these assumptions are valid, the boundary conditions at the free surface can be
ignored because mass, momentum and energy are conserved across the interface (it
does not change the total amount in the system). It is also assumed that any kinetic
energy within the tank is negligible with respect to the internal energy. Equating the
total change in internal energy to the energy flux coming in through the boundaries
results in

d

dt
[ρSV cVTS + ρL (VT − V ) cLTS] = QT + ρLAJwJcL (TJ − TS)

+ (pJ − pO) wJAJ + ρLAJw
3
J

(
1 − 1

2

A2
J

A2
O

)
, (2.29)

where QT is the total heat passing through the tank walls, pJ is the pressure at the
jet nozzle, pO is the pressure at the outlet and AJ and AO are the areas of the jet inlet
and outlet, respectively. The additional terms on the right-hand side of this equation
(in left to right order) represent differences in the convected internal energy, ‘flow
work’ due to pressure forces and kinetic energy between the inlet and outlet regions.
Conservation of total mass in the tank requires

d

dt
[ρSV + ρL (VT − V )] = 0. (2.30)

It can be shown that the sum of the flow-work and kinetic-energy terms is equal to
the total integral of the viscous-dissipation term inside the tank, and this is normally
negligible for most situations. Even so, they are included here for completeness. The
exact manner by which the energy is dissipated is not consequential for this simple
analysis; only the total integrated value is relevant. In fact, this expression holds even
if the jet becomes turbulent inside the tank. In that case, the directed kinetic energy
of the jet is transformed into the random kinetic energy of turbulent eddies, which
is eventually transformed by viscous dissipation into random molecular motion. This
increases the internal energy of the system and is accounted for by (2.30).
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Note that the pressure difference pJ − pO will be of the order of the dynamic
pressure scale since the constant thermodynamic pressures will cancel. This is the
pressure difference required to maintain the jet and is nearly equal to the pressure
difference across the external pump.

In order to keep the temperature from rising, it is necessary to pick the
characteristics of the jet so that

ρLAJwJcL (TJ − TS) + (pJ − pO) wJAJ + ρLAJw
3
J

(
1 − 1

2

A2
J

A2
O

)
= −QT. (2.31)

This can be satisfied by choosing many combinations of the jet parameters. For
example, the jet diameter and flow rate could be fixed and the jet temperature varied,
or the jet temperature and diameter could be fixed and the flow rate varied. It is
probably better to fix the temperature and vary the flow rate because a higher flow
rate will also tend to mix the liquid, making the uniform temperature approximation
even more valid. However, as the flow rate increases, so does the amount of kinetic
energy dissipated as heat in the liquid. This always works against the desired cooling
effect of the jet.

If the assumptions leading up to (2.29) are valid, then it is easy to control the tank
pressure. In a realistic situation, it is unlikely that the incoming heat QT is known,
a priori. It depends on the environment surrounding the tank, and that may change
from time to time. For example, if the tank is on Mars, it may vary because the
amount of solar radiation changes significantly between night and day. However, it
can be determined by measuring the temperature rise (or pressure rise since the two
are related by the saturation condition) and then using this to compute QT from
(2.29). Once QT is known, a jet with characteristics satisfying (2.31) can be used to
cancel the heating effect of QT exactly. If there is still some temperature rise even
when the jet is being used, then this indicates that QT is changing with time, but it
can still be computed at each instant from (2.29). With each new value of QT, the jet
parameters can be adjusted accordingly.

2.6. Dimensionless parameters

It is possible to write the governing equations in dimensionless form by defining the
length scale RT, velocity scale wJ, pressure scale ρLw2

J , time scale RT/wJ, temperature
scale qHRT/kL and mass-flux scale qH/L. This results in at least 20 independent
dimensionless parameters, but not all of them are equally important for the present
analysis. For this reason, only the most important dimensionless parameters will be
discussed here, and a more thorough dimensional analysis will be left for future work.

The dimensionless liquid equations depend only on three dimensionless parameters:
the Grashof number Gr = gβLqHR4

T/(kLν2
L), the Reynolds number Re = RTwJ/νL and

the Prandtl number Pr = νL/αL. When Gr/Re2 = O(1), the mixing jet will become
just as important as natural convection. For the present case, Gr/Re2 = 3.38, so it
is expected that the jet will have some effect on the temperature distribution. The
numerical results that follow will show that the jet interacts with the flow due to
natural convection in a non-trivial manner, but neither one completely dominates
the bulk mixing behaviour. A more comprehensive parametric analysis is required
to determine the behaviour over a wider range of parameters. When there is no jet,
the jet velocity scale can be replaced by the viscous velocity scale νL/RT. Then, the
Reynolds number as defined above simplifies to Re = 1 since the fluid velocity is no
longer an independent parameter, and only two dimensionless parameters remain to
describe the bulk liquid motion.
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The three parameters that are traditionally used to characterize the interaction
of the jet with the free surface are the Weber number We = ρLw2

Jd
2
J /(8σRT), the

Bond number Bo = gρLd2
J /(4σ ) and the jet Reynolds number ReJ = dJwJ/(2νL) =

dJ/(2RT)Re. The Weber number is the ratio of the jet’s inertia force to the surface
tension force, and the Bond number is the ratio of the gravitational force to the
surface-tension force. The jet Reynolds number is the ratio of inertial to viscous forces
and is a guiding parameter to determine whether the jet is laminar or turbulent. A
general rule deduced from the experimental results of Aydelott (1983) is that the jet
is laminar if ReJ < 450, a mixture of laminar and turbulent if 450 < ReJ < 1500 and
fully turbulent if ReJ > 1500. In that same paper, the deflection of the free surface is
correlated to the Bond and Weber numbers. The general trend is that the free-surface
deflection is directly proportional to the Weber number but inversely proportional to
the Bond number.

The values of these dimensionless parameters for the cases considered here are
given in table 2 using the properties in table 1. The jet is expected to be laminar since
ReJ = 266 < 450. The Weber number is also extremely small and the Bond number is
moderately large, so there should not be any significant deflection of the free surface.
This is verified by the subsequent numerical results.

3. Numerical solution method
The liquid equations are solved by using a modified version of the commercial

Galerkin finite-element code FIDAP (Engelman & Sani 1984). The temperature and
velocity fields are discretized using 9-node quadratic elements, and the pressure is
discretized using a linear discontinuous approximation (the three pressure unknowns
per element are the coefficients of the linear polynomial approximating the pressure).
The position of the free surface is adjusted using a front-tracking approach. The
locations of the interior nodes are adjusted using the method of spines. The spatial
mesh is refined until grid convergence is achieved, as demonstrated in the next section.
The mesh used for all the results in this paper consists of 1 167 091 non-uniformly
distributed elements. More elements are concentrated near the free surface and tank
walls, because this is where the largest solution gradients are observed.

The implicit backward-Euler method (with a forward-Euler predictor) is used for
the time discretization, and the time steps are chosen adaptively by using a method
that keeps the relative time truncation error at less than the prescribed tolerance ε.
Specifically, if dtn and dtn+1 are the time increments for time steps n and n+1, then at
the end of time step n, dtn+1 is computed by dtn+1 = dtn(ε/‖dn+1‖)1/2, where ‖dn+1‖
is the L2 norm of the correction (Gresho, Lee & Sani 1979). At each time step, the
resulting nonlinear system of equations is solved using an iterative quasi-Newtonian
method (Engelman, Strang & Bathe 1981), and convergence is attained when the
relative change in the solution norm is less than the prescribed tolerance 10−6. The
Jacobian is updated after every 5 iterations using Broyden’s method.

The temperature boundary condition (2.11) can often be confidently replaced by
the simpler form TI = TS since the departure from equilibrium is small for normal
evaporation rates. In the current numerical implementation, this boundary condition
is further replaced by a natural boundary condition of the form

qL · n = h (TI − TS) , (3.1)

where h is an artificial heat transfer coefficient chosen large enough so that the desired
boundary condition is closely approximated. The reason for using this form is that
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Symbol Description Value

ρV Vapour density 0.00133 g cm−3

ρL Liquid density 0.07047 g cm−3

kV Vapour thermal conductivity 4885 erg cm−1 s−1 K−1

kL Liquid thermal conductivity 12 440 erg cm−1 s−1 K−1

µV Vapour dynamic viscosity 3.207 × 10−5 g cm−1 s−1

µL Liquid dynamic viscosity 1.327 × 10−4 g cm−1 s−1

cV Vapour specific heat (at constant volume) 1.012 × 108 erg K−1 g−1

cL Liquid specific heat (at constant pressure) 9.7 × 107 erg K−1 g−1

αV Vapour thermal diffusivity 0.0256 cm2 s−1

αL Liquid thermal diffusivity 0.00182 cm2 s−1

βL Liquid thermal expansion coefficient 0.0175 K−1

a Accommodation coefficient 1.0

σ Surface tension 1.93 dyn cm−1

L Latent heat of vaporization 4.456 × 109 erg g−1

m Molar mass 2.0 g mol−1

TB Normal boiling temperature 20.27 K
pB Normal saturation pressure 1.014 × 106 dyn cm−2 (1.0 atm)
TC Critical point temperature 32.98 K
pC Critical point pressure 1.2927 × 107 dyn cm−2 (1.2927 × 106 Pa)

RT Tank radius 5.0 cm
zF Fill level 0.0 cm
zT Position of heater top −1.0 cm
zB Position of heater bottom −3.0 cm
dJ Jet diameter 1.0 cm
dO Outlet diameter 2.0 cm
dN Jet nozzle diameter 1.2 cm

qH Heater heat flux (liquid-heating case) 100 erg cm−2 s−1 (0.01 mW cm−2)
QT Total heat power input 6283 erg s−1 (0.6283 mW)
wJ Average jet velocity 1.0 cm s−1

TJ Inlet jet temperature 20.0 K

g Acceleration due to gravity on Earth 981 cm s−1

RG Ideal gas constant 8.31 × 107 erg K−1 mol−1

Table 1. Some material properties of hydrogen and other parameters at the normal boiling
point (TB, pB).

Parameter Description Definition Value

Gr Grashof number gβLqHR4
T/kLν2

L 2.4 × 107

Re Tank Reynolds number RTwJ/νL 2660
Pr Prandtl number νL/αL 1.03
We Weber number ρLw2

Jd
2
J /8σRT 9.13 × 10−4

Bo Bond number gρLd2
J /4σ 8.95

ReJ Jet Reynolds number dJwJ/2νL 266

Table 2. The most important dimensionless parameters and their numerical values for the
present cases.
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it also provides a more accurate method for computing the liquid-side interfacial
heat flux that avoids having to compute the temperature gradient explicitly. This
interfacial heat flux is required by the lumped vapour model in order to determine
the vapour pressure rise. The particular value of h is chosen by trial and error to be
large enough so that TI −TS is much less than any other temperature difference within
the liquid (in order to approximate the desired boundary condition), but is also small
enough so that the heat flux can be computed by (3.1) despite numerical error. Using
the dimensional scales presented in the last section, a sufficient condition for the first
requirement is that kL/RTh � 1. The particular value h = 1.6 × 107 erg cm−2 s−1 K−1

was found to satisfy this condition (kL/RTh = 1.6 × 10−4 � 1), but is still small
enough so that the heat flux could be accurately computed. This approach is similar
to using a non-zero value for κ in (2.11). In fact, if the vapour-side heat flux is
neglected in (2.6), then this is equivalent to picking the value κ = L/h. This method
was found to be more accurate and reliable than specifically setting TI = TS at the
interface and then trying to compute the heat flux by calculating the thermal gradient
directly.

The time-dependent saturation temperature TS appearing in (3.1) is determined by
simultaneously solving (2.26) along with the finite-element equations at each time step.
This equation is also solved using backward-Euler and Newton’s method, but it uses
the integrated heat flux from the previous time step because of certain complications
in the numerical implementation. Unfortunately, this semi-implicit approach requires
smaller time steps than for a fully implicit approach.

4. Results
The solution is obtained for three different tank-wall heat distributions: localized

heating in the liquid, direct heating of the vapour and uniform heating over the
entire tank wall. The total heat power input is the same for each case and equal
to QT = 0.628319 mW. These are motivated by the experiments of Aydelott (1967).
In the liquid-heating case, a uniform heat flux of 0.01 mW cm−2 is applied over just
the heater surface area. The remainder of the tank wall is perfectly insulated. In the
uniform-heating case, the heat is distributed evenly over the entire tank surface. For
the vapour-heating case, it is released only within the vapour region. For each of these
cases, the solution is obtained both with and without a jet. When there is a jet, its
speed is 1.0 cm s−1 and its temperature is 20 K. The tank is initially half-filled (zF = 0)
with liquid hydrogen that is in equilibrium with its saturated vapour at a temperature
of 20 K. The other parameters and material properties are given in table 1.

The rate of pressure rise for the liquid-heating case is shown in figure 2 for three
different meshes and three values of ε. The solution is nearly identical as the number
of elements is increased, but there are some noticeable changes as the time tolerance
is varied. The value ε = 0.0001 provides a suitable compromise between accuracy
and efficiency and is used along with the maximum number of elements for all of
the results presented here. The approximate computation time for each case varied
between 13 and 30 cpu hours running on an SGI Origin 2000 with a single 195 MHz
IP27 processor and 512 MB of memory.

The change in vapour pressure up to t = 7200 s is shown in figure 3 (a) when there
is no mixing jet. Also shown is the thermodynamic pressure rise predicted by (2.29).
The corresponding saturation temperatures are shown in figure 4 (a, b). Eventually,
the rate of pressure rise is the same for each heat distribution and nearly equal to
that predicted by thermodynamics, although there are significant differences for early
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Figure 2. The rate at which the vapour pressure rises in the liquid-heating case for three
different meshes and three different choices of the maximum time truncation error ε. In (a),
ε = 0.0001, and in (b) the number of elements is fixed to 1 167 091. The oscillations become
more pronounced as ε is decreased. The remaining results in this paper use 1 167 091 elements
and ε = 0.0001.

92200

92000

91800

91600

0 2000 4000 6000 8000

t (s)

Liquid heating

Vapour heating

Thermodynamics

p 
(P

a)

(a)
91560

91550

91540

91530

91520

0 100 200 300 400 500

t (s)

(b)

Uniform heating

91510
Liquid heating

Vapour heating

Thermodynamics

Uniform heating

(c)
0.3

0.2

0.1

0 100 200 300 400 500
t (s)

Liquid heating

Thermodynamics

dp
/d

t (
Pa

 s
–1

)

Figure 3. (a, b) Vapour pressure for three different tank-wall heat distributions when there is
no jet. The slope of the pressure curve is shown in (c) for the liquid-heating case only. The
total heat power input is 0.6283185mW.
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Figure 4. (a, b) Vapour temperature and (c, d ) interfacial heat power for three different
tank-wall heat distributions when there is no jet. The total heat power input is 0.6283185mW.

times as shown in figure 3 (b). The liquid-heating case most closely follows
thermodynamics because it exhibits the most convective mixing, which promotes
a more uniform temperature distribution. However, for earlier times, the slope of the
pressure curve exhibits oscillations as shown in figure 3 (c). This can be attributed to
a coupling between the buoyancy force and convective cooling as will be explained
later. The curve that deviates most from thermodynamics is, not surprisingly, the
vapour-heating case because heating from above is a thermally stable situation that
minimizes convection in the liquid. In that case, all of the heat enters the liquid
primarily through a diffusive boundary layer at the liquid–vapour interface, and this
is slower than convective mixing. The uniform-heating case lies between these two
extremes since the total heat input is divided evenly between the liquid and vapour
regions.

The total interfacial heat flow QIL, integrated over the entire liquid–vapour interface,
is shown in figure 4 (c, d ). Part of this energy is used to evaporate more liquid, and
part of it is used to heat the existing vapour. After an initial transient, QIL seems to
be approaching a constant value, which is consistent with the observation that the
slope of the pressure curve is also approaching a constant value since the two are
related by (2.26).
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Figure 5. The effect of convection on the total interfacial heat flow is shown in (a). The
heater temperature, interfacial temperature and convective speed for the liquid-heating case
are compared in (b). The heater temperature is measured at a depth of 1.1 cm beneath the
interface (location of maximum temperature), and the convective speed is measured at a point
on the interface that is 3.8 cm from the centre of the tank (location of maximum velocity). The
oscillations result from a coupling between the buoyancy force and convective cooling.

The fact that the interfacial heat flux is approaching a constant value suggests that
the spatial temperature distribution in the liquid is approaching a static configuration
even though the average temperature is still increasing. This happens because the time
scale for thermal diffusion in the liquid is much shorter than the time scale for changes
in the interfacial temperature, ∂TS/∂t � αLTS/R

2
T. Thus, after an initial transient, the

energy coming in through the tank wall is divided between the energy used to raise
the average liquid temperature and that which goes into the vapour region, both of
which assume constant values when the static configuration is achieved. This is the
same assumption used to derive the thermodynamic model of the entire tank, and this
is the reason why the final rate of pressure rise agrees so well with thermodynamics.

The final value of QIL is 0.092832 mW for the liquid-heating case, −0.221314 mW
for the uniform-heating case and −0.535256 mW for the vapour-heating case. In the
uniform-heating case, the amount of heat that is added directly to the vapour is
0.314159 mW. Thus, the total amount of heat that remains in the vapour is equal
to this amount plus the interfacial heat power, which is negative in this case, i.e.
0.314159 mW − 0.221314 mW = 0.092845 mW. Similarly, the total amount of heat
that remains in the vapour for the vapour-heating case is equal to 0.628319 mW −
0.535256 mW = 0.093062 mW. Thus, in all three cases, the interfacial heat power
adjusts itself so that the same amount of heat goes into the vapour. This has to be
true since the slope of each pressure curve agrees with thermodynamics, and this
slope is proportional to the total amount of heat going into the vapour. This excellent
agreement among the cases (to within two to three significant digits) is also a good
indication of the accuracy of the model and of the method used to compute the
interfacial heat flux.

The oscillations in QIL and dp/dt for early times are a direct result of oscillations
in the convective speed near the interface as shown in figure 5 (a). The oscillations
in the convective speed can be understood by examining figure 5 (b). The buoyancy
force is essentially proportional to the difference between the heater and interfacial
temperatures. Fluid near the heater accelerates as this temperature difference increases.
However, as the convective speed increases, it brings in cooler fluid from the centre of
the tank, reducing this temperature difference. This cycle repeats for a while until the



58 C. H. Panzarella and M. Kassemi

91550

91540

91530

91520

0 2000 4000 6000 8000
t (s)

Liquid heating

Vapour heating

p 
(P

a)

(a)

20.002

20.001

0 2000 4000 6000 8000
t (s)

(b)

Uniform heating

20.000

Liquid heating

Vapour heating

Uniform heating

(c)

0

–0.2

–0.6

0 2000 4000 6000 8000
t (s)

Liquid heating

Vapour heating

Q
IL

 (
m

W
)

91510

–0.4

T
 (

K
)

Uniform heating

QIL= –0.314159 mW

QIL= –0.628319 mW

Figure 6. (a) Vapour pressure, (b) vapour temperature and (c) interfacial heat flow for the
three different tank-wall heat distributions when the jet speed is 1 cm s−1 and its temperature
is 20K. The total heat power input for each case is 0.6283185mW.

temperature difference between the heater and the interface approaches a constant
value.

The results shown in figure 6 are for the same cases as before except that now a
jet of liquid is forced in from the bottom of the tank with a temperature of 20 K and
an average speed of 1 cm s−1. The vapour pressure now approaches a constant as the
cooling effect of the jet balances the incoming heat. The time required to reach this
steady state is about the same for all cases because it depends primarily on how long
it takes for the jet to reach and spread across the free surface.

In all of these jet cases, the value of QIL is the exact negative of the amount of
heat that is being added directly into the vapour region so that the net heat input
into the vapour region is zero. This has to be true since, otherwise, the temperature
and pressure of the vapour would be changing and the solution would not have yet
reached a steady state. Measurements of the liquid-side interfacial heat power show
that QIL = 0 for the liquid heating case, QIL = −0.314159 mW for the uniform-
heating case and QIL = −0.628319 mW for the vapour-heating case. The exact (to
within six significant digits) agreement between the heat input and what is actually
measured at the interface is another good indication of the accuracy of the model
and of the method used to compute the interfacial heat flux.

The final vapour temperature is quite different for each case in figure 6 (b).
The difference between the final temperature and the initial temperature for the
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Figure 7. Local heat flux on the liquid side of the interface (a) with no jet
and (b) with a jet.

vapour-heating case is almost three times larger than for the liquid-heating case even
though the total heat input is the same. This result cannot be predicted by using
purely thermodynamic considerations, because such an analysis predicts a single final
temperature that depends solely on the total heat power input and not on how
this heat is distributed over the boundary. In fact, according to the thermodynamic
model (2.31), the final vapour temperature corresponding to a jet with the indicated
characteristics should be approximately 20.00117 K (the pressure-work and kinetic-
energy terms were negligible for this case). One of the assumptions leading up to
(2.31) is that the temperature is the same everywhere in the tank and equal to the
vapour temperature. However, this is not the case as the numerical results indicate. It
is worth noting that the average liquid temperature over the outlet surface is different
from the vapour temperature and equal to 20.001121 K in the liquid heating case,
20.001129 K in the uniform-heating case and 20.001128 K in the vapour-heating case.
Interestingly, these temperatures are much closer to the predicted value given by
(2.31). Thus, if the lumped analysis for the entire vapour and liquid regions were
based on the outlet temperature instead of the saturation temperature, its predictions
would be more accurate. This is because the difference between the inlet and outlet
temperatures more closely characterizes the amount of energy actually being removed
by the jet.

A plot of the local heat flux on the liquid side of the free surface is shown in
figure 7 (a) for those cases without a jet and in figure 7 (b) for those cases with a
jet. When there is no jet, the heat flux reaches a maximum at some interior position
for the liquid heating case because this is where the hottest fluid convected from
the heater reaches the free surface. The maximum occurs at the wall for the other
cases.

In the uniform-heating case, there is a potential singularity in the heat flux at the
wall because the temperature along the free surface is nearly forced to be a constant
at the same time that a positive heat flux is prescribed at the wall. This forces the
liquid at the wall to be hotter than the surrounding liquid, even at a point that is
infinitesimally close to the free surface. This leads to a singularity in the interfacial
heat flux unless the temperature of the free surface is not constrained to be constant
there. This would be the case if a non-zero value of κ were used in the temperature
boundary condition (2.11). However, as mentioned in § 3, a non-zero value for κ is
effectively obtained by using a finite value for h in (3.1). Removing this singularity
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is another reason for using this natural boundary condition. This singularity could
also be suppressed by giving the wall some finite thickness and then solving for the
temperature field inside the wall.

When the jet is used, the heat flux has a minimum value at the centre of the
tank where the jet strikes the free surface. The heat flux is negative near the centre
because heat is being removed by the jet. In the liquid-heating case, the heat being
removed from the vapour region must be equal to the heat being released by vapour
that is condensing at the free surface. Near the wall, the heat flux becomes positive,
resulting in local evaporation. Thus, there are localized regions of evaporation and
condensation at the interface, but they exactly cancel each other so that the net mass
transfer into the vapour region is zero. There is a steady flow of vapour from regions
of evaporation to regions of condensation.

There is also some mass flow within the liquid due to phase change, but this flow
is negligible compared to the flow created by natural convection because the rate of
phase change is so small. For example, the heat flux at the centre of the tank for the
vapour-heating case with a jet is about −0.8 mW cm−2. According to the interfacial
energy balance given by (2.6), this corresponds to a maximum condensation rate of
J = −1.8 × 10−7 g s−1cm−2 assuming all of the heat energy is used for condensation.
This leads to a liquid flow speed of only 2.6 × 10−6 cm s−1 using the interfacial mass
balance given by (2.4). This is much less than the fluid speed resulting from either
natural convection or the jet.

At this point, it would be prudent to check whether the conditions required for the
validity of the lumped-vapour approximation are satisfied by the numerical solutions.
The first condition given by (2.19) is satisfied because the left-hand side evaluates to
0.002 for the properties given in table 1. The second condition given by (2.20) requires
a value for ∂TS/∂t , and this can be obtained from the solution in figures 4 (b) and
6 (b). Using the maximum value at time t = 0 for the vapour-heating case with no
jet, the left-hand side of (2.20) evaluates to about 0.001. Thus, both conditions are
satisfied for this particular problem, and the lumped-vapour approximation is valid
for the cases considered here.

Contour plots of the final temperature field and streamlines in the liquid at t =
7200 s are shown in figure 8 for the liquid-heating case. Although not shown here,
the solution at t = 3600 s looks identical to the final solution, and it is clear that the
spatial structure of the solution has reached a steady state for both the jet and no-jet
cases.

When there is no jet, the streamlines indicate that there is a counterclockwise
circulation due to natural convection that is primarily confined to the upper half of
the tank. Because of this, the temperature of the liquid throughout the top half is
nearly uniform despite pronounced thermal stratification in the bottom half. The final
maximum convective speed is about 0.0932 cm s−1 at a point located on the interface
near the heater where the spacing between the streamlines is a minimum. As expected,
there is no noticeable deflection of the free surface.

When the jet is used, cooler fluid enters from the bottom of the tank, spreads
across the free surface and is deflected downwards forming a clockwise circulation
cell where the free surface meets the tank wall. The counterclockwise cell due to
natural convection has been forced into the lower half of the tank by the action of
this jet. On its way out, the jet fluid rides around this cell and is pushed back towards
the centre of the tank where it then turns downward and moves out of the bottom
through the outlet. The free surface is deflected slightly at the centre, but that is
barely noticeable on this scale.
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Figure 8. (a) Temperature contours and (b) streamlines at t = 7200 s for liquid heating both
with and without a jet. The contours are evenly spaced between the minimum and maximum
values. The minimum and maximum temperatures are 20.018419K and 20.023815K for the
no-jet case and 20K and 20.004278 K for the jet case. The maximum convective velocity for
the no-jet case is 0.0932 cm s−1.

The final solution at t = 7200 s for the uniform-heating case is shown in figure 9.
When there is no jet, there is a thermal boundary layer near the interface owing to
the direct heating of the vapour in addition to the thermal boundary layer near the
tank wall. There is still a natural-convection cell, but it is weaker and more spread
out than before. The maximum speed is 0.0309 cm s−1, and it occurs near the tank
wall about halfway down. When the jet is used, the solution looks very similar to the
corresponding liquid-heating case.

The final solution for the vapour-heating case is shown in figure 10. A thermal
boundary layer initially develops near the interface as the vapour temperature rises,
leading to pronounced thermal stratification throughout the liquid. There is only a
minimal amount of convection due to a slight radial temperature gradient near the
walls caused by specifying an insulated boundary condition on the spherical surface.
The magnitude of this convection is much less than for the other cases, only about
0.00497 cm s−1. When the jet is used, the flow field looks like the other cases, but the
temperature field is quite different. The temperature changes rapidly around the jet
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No jet

Jet

(a) (b)

Figure 9. (a) Temperature contours and (b) streamlines at t = 7200 s for uniform heating both
with and without a jet. The contours are evenly spaced between the minimum and maximum
values. The minimum and maximum temperatures are 20.019849K and 20.023583K for the
no-jet case and 20K and 20.002330 K for the jet case.

and next to the free surface, but it is nearly constant everywhere else because no heat
is entering through the tank walls.

By comparing the final temperature contours for the jet cases in figures 8, 9 and
10, we can see why a lumped analysis of the whole system is more inaccurate if
it is based on the vapour temperature instead of on the outlet temperature. In the
liquid-heating case, much of the heat being added directly to the liquid is absorbed by
the jet and exits through the outlet before ever reaching the vapour. This is why the
final vapour temperature is lower in the liquid-heating case and why the temperature
difference between the vapour and outlet is so large. In the vapour-heating case, all
of the heat is added directly to the vapour and is absorbed by the cooler jet right at
the free surface. This is why there is little temperature variation elsewhere in the tank,
and the outlet temperature is nearly equal to the vapour temperature. In all cases,
the average outlet temperature is about the same as that predicted by (2.31). For this
reason, if a lumped analysis of the whole tank is preferred, it should be based on the
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No jet

Jet

(a) (b)

Figure 10. (a) Temperature contours and (b) streamlines at t = 7200 s for vapour heating both
with and without a jet. The contours are evenly spaced between the minimum and maximum
values. The minimum and maximum temperatures are 20.014994K and 20.027508K for the
no-jet case and 20K and 20.001284 K for the jet case.

difference between the average liquid temperature at the outlet and the incoming jet
temperature.

5. Conclusions
The validity of a thermodynamic treatment of cryogenic storage tanks is tested

by comparing with direct numerical solutions for three different tank-wall heating
distributions. The complete solution is obtained inside the liquid region, but a lumped
approximation is used for the vapour region. The lumped-vapour model accounts
for any heat and mass flow across the liquid–vapour interface as well as any heat
coming in directly through the tank walls. A liquid jet is sometimes used to mix the
liquid and control the tank pressure. The primary objective is to be able to predict
the tank pressurization and temperature rise under a number of different scenarios
both with and without the mixing jet. Only a ground-based tank is considered here
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where the liquid is always at the bottom of the tank, but the methods developed here
can equally apply to space-based tanks.

For the cases without a jet, it is shown that the final rate at which the
vapour pressure rises in a small cryogenic tank is very close to that predicted by
thermodynamics, even though the initial transients and final pressures are different.
When all of the heat enters through the liquid, natural convection promotes mixing
of the fluid and redistributes the heat more evenly. Initially, the vapour pressure
rises most slowly in this case because a larger portion of the incoming heat power
is used to heat the liquid and less is available for evaporation. Even so, the final
pressure in this case is closest to thermodynamic predictions because it exhibits the
strongest liquid mixing. At the opposite extreme, if all of the heat is added directly
to the vapour, the pressure rises most rapidly at first, and a thermal boundary layer
develops on the liquid side of the interface. This is a thermally stable configuration,
and the magnitude of convective mixing in the liquid is greatly reduced. Thus, the rate
at which heat can leave the vapour is conduction limited and accounts for the rapid
initial pressure rise. When the heat is distributed uniformly over the tank surface, the
solution lies between these two extremes.

In the liquid-heating case, there is also a curious initial oscillation in the vapour
pressure and interfacial heat flux that appears because of a coupling between the
buoyancy force and convective cooling. As the heater temperature increases, so does
the buoyancy force. This increases the convective speed and brings cooler fluid in near
the wall. This cools the heater, which reduces the strength of natural convection and
permits the heater temperature to start increasing again. This effect appears to be a
rather general consequence of convective heating with a specified wall heat flux, and
it should not be limited solely to the context of cryogenic tanks. It would probably
be diminished or completely suppressed by specifying the heater temperature instead
of the heat flux.

When a liquid jet is used to mix and cool the bulk liquid, the final pressure
approaches a constant as the cooling effect of the jet balances the heat input. The
time required to reach this steady state is about the same in all cases and depends
on the convective time scale of the jet. As before, the final pressure is highest in the
vapour-heating case and lowest in the liquid-heating case. At steady state, the total
interfacial heat flow exactly balances the amount of heat being added directly to the
vapour. This is a necessary condition for there to be a steady state since any net
amount of heat added to the vapour would increase its pressure.

One general conclusion that can be surmised from all of these cases is that the final
pressure is always highest for the case in which most of the heat is directly added
to the vapour, even when the total heat power input is the same. This is true with
or without a jet and is a result that cannot be obtained solely from thermodynamics
since it depends on the initial transient and on the temperature distribution in the
liquid. This may appear, at first glance, to violate thermodynamics since the total
heat input is the same, but it does not. If the heat input were to suddenly stop, there
would be another final transient after which the temperature and pressure in each
case would be the same. In a real cryogenic tank, the process is always transient
since there is always some net heat input leaking in through the walls. This is why
thermodynamics alone is unable to completely describe these systems. Moreover, the
departure from thermodynamics becomes even worse as the tanks become larger.
Thus, when designing cryogenic tanks, especially those planned for long-duration
space missions, every effort should be made to restrict the amount of heat entering
directly into the vapour.
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It also follows that the quickest way to reduce the pressure in the tank is to place
a cryocooler directly in the vapour. This is because the thermal inertia of the vapour
is normally much less than that of the liquid, and so changes in temperature and
pressure in the vapour happen more quickly than in the liquid. Thus, even though
a cooling jet in the liquid can be used to control the pressure in the tank over the
long term, it would be unable to control rapid fluctuations in pressure resulting from
sudden changes in heat input to the vapour. Thus, from an idealized point of view, a
combination of a cryocooler in the vapour and a jet in the liquid might be the best
option.

The general trends predicted by the present model show better agreement with
the experimental results of Aydelott (1967) than the two simpler thermodynamic
models used in that paper. These were the homogeneous model, where the liquid and
vapour are both at the same temperature and pressure, and the surface evaporation
model, where all the heat is assumed to go directly into the vapour with the liquid
temperature held constant at its initial value. The experiments show that the initial
rate of pressure rise is greatest for the vapour-heating case and lowest for the liquid-
heating case, in agreement with the present model results. The homogeneous model is
able to describe the liquid-heating case and the surface evaporation model agreed with
the vapour-heating case, but neither model could describe both scenarios equally well.
The approach formulated in the present paper essentially combines these two simpler
models into a single unified model with the additional feature that the complete
liquid dynamics and free-surface motion are also determined. Unfortunately, it is
not possible to compare directly with these experimental results because the applied
heat flux was so large as to result in turbulent natural convection, and the present
model does not account for turbulence. Nevertheless, it is seen that the general trends
predicted herein also seem to hold for the higher heat flux cases. Future work will
consider how to best extend the current model to account for turbulence so that more
direct comparisons can be made.

The present analysis was performed for a scaled ‘model’ tank being developed in our
fluid visualization laboratory. This tank is much smaller than those being proposed
for future manned space missions. The scale-up problem poses serious complications.
For larger tanks, the lumped-vapour approximation may no longer be valid and the
mixing jet may become turbulent. Also, in a space-based tank there could be multiple
vapour bubbles surrounded by liquid floating around with no preferred equilibrium
position. If a jet is used to mix the liquid, this could push some of the vapour bubbles
up against the wall changing the heating mode from one of liquid-heating to one of
vapour-heating.

Some insight can be gained about this space-based scenario by considering the
ground-based results already obtained. For a space-based tank with completely wetted
walls, the pressure would rise slowly as in the liquid-heating case. However, if one
of the vapour bubbles were to come into contact with the wall, then the vapour
pressure would suddenly rise more rapidly, as in the vapour-heating case. The vapour
pressure might behave erratically depending on the dynamic configuration of liquid
and vapour. A model of this scenario is currently being developed using the same
lumped-vapour approach as described in this paper, but with a more sophisticated
treatment of the free surface to account for the complex vapour bubble dynamics.

This work was funded by the National Center for Microgravity Research (NCMR)
and the United Space Research Consortium (USRA).
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Appendix. Derivation of the lumped-vapour model
First, note that the vapour density is equal to its saturation value,

ρV = ρS(pV) =
pVm

RGTS

, (A 1)

which only depends on pV since TS = TS(pV) is a function of pV. The vapour volume
depends on ρS since (2.25) can be immediately integrated with the result

V = V0

ρL − ρS,0

ρL − ρS

= V0

(
1 +

ρS − ρS,0

ρL − ρS

)
, (A 2)

where V0 is the initial volume and ρS,0 is the initial density. This shows that the
vapour volume will be close to its initial value if the change in vapour density is small
compared to the overall density difference between liquid and vapour.

By making use of (2.21), (2.25) is written as

dV

dt
=

M

ρL

, (A 3)

and then this is substituted into (2.22). Next, (2.24) is solved for QIV and substituted
into (2.22). The left-hand side of (2.22) is expanded and the relationship for M in
(2.21) is used to eliminate Me from both sides of the equation. This all leads to

ρSV
de

dt
+ M

[
L − pV

(
1

ρS

− 1

ρL

)]
= QV + QIL. (A 4)

By substituting e = cVTS and the expression for M given by (2.21) into (A 4),{
ρSV cV

∂TS

∂pV

+
∂

∂pV

(ρSV )

[
L − pV

(
1

ρS

− 1

ρL

)]}
dpV

dt
= QV + QIL. (A 5)

This can be written more compactly as

dpV

dt
= F (pV) (QV + QIL) , (A 6)

where

F (pV) ≡
{

ρSV cV

∂TS

∂pV

+
∂

∂pV

(ρSV )

[
L − pV

(
1

ρS

− 1

ρL

)]}−1

(A 7)

only depends on pV.
This can be further simplified by observing that for an ideal gas

∂TS

∂pV

=
RGT 2

S

LmpV

, (A 8)

∂

∂pV

(ρSV ) =
ρLV

ρL − ρS

(
m

RGTS

− 1

L

)
, (A 9)

(A 10)

by making use of (2.10), (A 1) and (A 2). Substituting these expressions into (A 7) and
performing a few more algebraic simplifications results in

F (pV) =
L

V

{
cVTS +

(
Lm

RGTS

− 1

)
ρL

ρL − ρS

[
L − pV

(
1

ρS

− 1

ρL

)]}−1

. (A 11)
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